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Binary Symmetric Channel (BSC)
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BSC with Noiseless Feedback
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Feedback does not improve the channel capacity.
But it simplifies the coding. 3



BSC with Feedback: Stochastic	vs. Adversarial
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Existing Results

• Berlekamp [1] and Zigangirov [2] determined the capacity for adversarial BSC with feedback.

• Schalkwijk [3] proposed a simple scheme for adversarial BSC with feedback.

• Ahlswede et	al .	[4] then proposed a coding method called the rubber coding method for adversarial

channel with feedback.

But none of these schemes are amenable to direct, efficient implementation.

• Horstein’s scheme [5] and Li	and	El	Gamal’s scheme [6] can be implemented and can be applied to more

general channels, but our scheme provides stronger optimality guarantees.
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Our Results

• We propose a	practically-implementable	end-to-end	scheme for BSC with feedback based on the rubber

coding method;

• Our scheme is optimal with respect to the error-exponent, second order coding rate, and the moderate

deviations performance for certain rates,	and	it	is	nearly	optimal	with	respect	to	the	third	order	coding	

rate	and	the	pre-factor	of	the	error	exponent.

• Our analysis strictly enlarge the set of rates for which the sphere-packing bound is known to be

achievable for the BSC with feedback.

6



Rubber Coding Method

To send a skeleton sequence 𝑥#!:

• Decoding: Whenever the decoder receives a bit, it checks if there are consecutive ℓ zeros. If yes, it

removes the consecutive ℓ zeros as well as the bit before these consecutive ℓ zeros. Finally, it truncates

the output to 𝑁’ bits.

• Encoding: If the decoder’s current version is a prefix of 𝑥#! , send the next bit. If not, send 0.

Skeleton sequence: binary sequence with no ℓ consecutive zeros.

𝒜ℓ
#!: the set of all binary sequences of length 𝑁’ with no ℓ consecutive zeros.
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Rubber Coding Method
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Need ℓ + 1 bits to correct one error.

A rubber code with block length 𝑁 is admissible for 𝐵𝑆𝐶123
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𝑁, + ℓ + 1 𝑓𝑁 ≤ 𝑁
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Skeleton Sequences and Markov Chains

How do we map message 𝑚 ∈ ℳ to a skeleton sequence efficiently?

The stochastic process that is uniformly distributed over 𝒜ℓ
#!is an (ℓ − 1)-th order Markov

chain.

𝐴ℓ 𝑁 = 𝒜ℓ
#

Initial distribution of the Markov chain:

Pr 𝑋$ = 1 =
𝐴5 𝑁 − 1
𝐴5(𝑁)

, Pr 𝑋$ = 0 = 1 −
𝐴5 𝑁 − 1
𝐴5(𝑁)

0 1

1 −
𝐴5 𝑁 − 𝑖 − 1
𝐴5(𝑁 − 𝑖)

𝐴5 𝑁 − 𝑖 − 1
𝐴5(𝑁 − 𝑖)

Transition matrix of the Markov chain 0 1

𝑋-7$

0

1
𝑋-
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Skeleton Sequences and Markov Chains

Initial condition: 𝐴5 1 = 2, 𝐴5 2 = 3.

The initial distribution and the transition matrix of the Markov chain that is uniform over the set of
skeleton sequences can be efficiently computed.

𝐴5(𝑁) =

number of sequences begin with 1: 𝐴5 𝑁 − 1 .

number of sequences begin with 0

number of sequences begin with 00: 0.

number of sequences begin with 01: 𝐴5 𝑁 − 2 .

𝐴5 𝑁 = 𝐴5 𝑁 − 1 + 𝐴5(𝑁 − 2).
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Arithmetic Coding

How do we map message 𝑚 ∈ ℳ to a skeleton sequence efficiently?

Shannon-Fano-Elias Code compresses a source Markov chain with known distribution to near optimal length.

message 𝑚 ∈ 0,1 89: ;ℓ(#) Decompressor
𝐴>

Skeleton sequence 𝑥#! ∈ 𝒜ℓ
#!

Rubber coding method

Skeleton sequence 𝑥#!
Compressor

𝐴?
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Our Final Construction

message 𝑚 ∈ 0,1 #& Decompressor Skeleton sequence 𝑥#! ∈ 𝒜ℓ
#!

Rubber coding method

Skeleton sequence 𝑥#!Compressormessage 𝑚 ∈ 0,1 #&

𝒞ℓ,#,&:

Error probability: probability that the fraction of errors is larger than $
ℓ7$

1 − #!

#

Streaming: the	encoder	does not	need	the	entire	message	to	begin	encoding
Universal: the	encoder does	not	need knowledge	of	the	cross-over	probability 𝑝
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Optimality: Capacity Achieving
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Optimality: Second-order Rate

Theorem For	any	fixed	ℓ, 𝐵𝑆𝐶/0(𝑝ℓ) with	cross-over	probability	 𝑝ℓ. ∀𝜖, let	𝑅(𝑁, 𝜖) denote	the	largest	
possible	rate	such	that	𝒞ℓ,#,&(#,@) has	error	probability	at	most	𝜖, and	let	C denote	the	capacity	of	
𝐵𝑆𝐶(𝑝ℓ). Then	for	large 𝑁,

𝑅 𝑁, 𝜖 ≥ 𝐶 −
1
𝑁

𝑝 1 − 𝑝 log5
1 − 𝑝
𝑝 Φ.$ 1 − 𝜖 − 𝑂

1
𝑁 .

(Second-order	coding	rate)	Given	a	block	length	𝑁 and	an	𝜖 such	that	0 < 𝜖 < 1,	the	largest	possible	
rate	of	a	code	for	the	𝐵𝑆𝐶/(𝑝) with	error	probability	less	than	or	equal	to	𝜖 is

𝐶 −
1
𝑁

𝑝 1 − 𝑝 log5
1 − 𝑝
𝑝 𝛷.$ 1 − 𝜖 +

log𝑁
2𝑁 + 𝑜(1).
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Optimality: Moderate Deviations

Theorem	Fix	any	ℓ ≥ 2. Let	𝐶 be	the	capacity	of	the	𝐵𝑆𝐶/(𝑝ℓ). For	any	sequence	of	real	numbers	𝜖#
s.t. 𝜖# → 0 as		𝑁 → ∞ and	𝜖# 𝑁 → ∞ as		𝑁 → ∞,	consider	the	sequence	of	codes	 𝒞ℓ,#,& # # such	
that	𝑅# = 𝐶 − 𝜖#.	Let	𝑃) (𝒞ℓ,#,& # ) denote	the	average	error	probability	of	𝒞ℓ,#,& # over	the	
𝐵𝑆𝐶/(𝑝ℓ). Then	

lim
#→B

1
𝑁𝜖#5

log 𝑃) 𝒞ℓ,#,& # = −
1

2𝑝 1 − 𝑝 log5 1 − 𝑝𝑝
,

(Moderate	deviations)	For	any	sequence	of	real	numbers	𝜖# s.t. 𝜖# → 0 as		𝑁 → ∞ and	𝜖# 𝑁 → ∞ as		
𝑁 → ∞,	for	any	sequence	of	codes	 𝒞#,& # # such	that	𝑅# ≥ 𝐶 − 𝜖#,	we	have

𝑙𝑖𝑚 𝑖𝑛𝑓
#→B

1
𝑁𝜖#5

log 𝑃) 𝒞ℓ,#,& # ≥ −
1

2𝑝 1 − 𝑝 log5 1 − 𝑝𝑝

15



Optimality: Error Exponent

Theorem For	any	fixed	ℓ ≥ 2,	consider	the	sequence	of	codes	 𝒞ℓ,#,&ℓ∗ #
at	the	tangent	rate	𝑅ℓ∗ That	is,	𝑅ℓ∗ = 𝑅ℓ(𝑝ℓ) =

1 − ℎ(𝑝ℓ).	Then	for	the	𝐵𝑆𝐶/(𝑝)with	𝑝 < 𝑝ℓ, 𝒞ℓ,#,&ℓ∗ #
at	rate	𝑅ℓ∗, the error probability

𝑃) 𝒞ℓ,#,&ℓ∗ ≤ 𝑂
1
𝑁

𝑒.#⋅D$% & .

(Sphere-packing	bound	with	pre-factor)	Let	𝒞#,& be	a	sequence	of	codes	for	the	𝐵𝑆𝐶/(𝑝),	each	with	rate	less	𝑅ℓ∗ than	

the	capacity.	Let	𝐸EF, 𝑅 be	the	slope	of	𝐸EF 𝑅 at	𝑅.	Then	the	error	probability	𝑃) 𝒞#,& satisfies

𝑃) 𝒞#,& ≥ 𝑂
1

𝑁
$
5 $7D$%! &

𝑒.#⋅D$% & .

Our	“pre-factor”	is 𝑂 $
#
,	while the	optimal	order	of 𝑂 $

#
&
' &()$%! *

.	For the	binary erasure	channel	(BEC),	both	

with	and	without	feedback,	the optimal	pre-factor	is 𝑂 $
#
. 16



Sphere Packing Bound Below Critical Rate
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Conclusion

• We	provide	a	practical	implementation	of	the	rubber coding method	of	Ahlswede et	al. for	feedback BSC.	

• For	the stochastic	BSC with feedback,	we	show	that	our scheme is	nearly	optimal	in	a	strong	sense	for	

certain	parameters.	

• A byproduct	of	the	analysis	is	a	strict	enlargement	of	the	rates	for which	the	sphere-packing	bound	is	

known	to	be	achievable	with feedback	BSC.
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