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Binary Symmetric Channel (BSC)
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BSC with Noiseless Feedback
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BSC with Feedback: Stochastic vs. Adversarial
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Existing Results

* Berlekamp [1] and Zigangirov [2] determined the capacity for adversarial BSC with feedback.
* Schalkwijk [3] proposed a simple scheme for adversarial BSC with feedback.
* Ahlswede et al.[4] then proposed a coding method called the for adversarial

channel with feedback.
But none of these schemes are amenable to direct, efficient implementation.

* Horstein’s scheme [5] and Li and El Gamal’s scheme [6] can be implemented and can be applied to more

general channels, but our scheme provides stronger optimality guarantees.



Our Results

* We propose a practically-implementable end-to-end scheme for BSC with feedback based on the rubber
coding method;

e Our scheme is optimal with respect to the error-exponent, second order coding rate, and the moderate
deviations performance for certain rates, and it is nearly optimal with respect to the third order coding
rate and the pre-factor of the error exponent.

* Our analysis strictly enlarge the set of rates for which the sphere-packing bound is known to be

achievable for the BSC with feedback.



Rubber Coding Method

: binary sequence with no € consecutive zeros.

!/
AY : the set of all binary sequences of length N’ with no £ consecutive zeros.

!
To send a skeleton sequence x

* Decoding: Whenever the decoder receives a bit, it checks if there are consecutive £ zeros. If yes, it

removes the consecutive ¢ zeros as well as the bit before these consecutive ¢ zeros. Finally, it truncates

the output to N’ bits.

 Encoding: If the decoder’s current version is a prefix of x" ', send the next bit. If not, send 0.



Rubber Coding Method

Encoder wants to send a skeleton sequence x = 011010€ A$
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Skeleton Sequences and Markov Chains

How do we map message m € M to a skeleton sequence efficiently?

Ap(N) = |AF|
Initial distribution of the Markov chain:
PriX, = 1| = JPriX, =01 =1-—
A I B R ()
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Transition matrix of the Markov chain 0 1
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Skeleton Sequences and Markov Chains

— number of sequences begin with 1:

— — number of sequences begin with 00:

— number of sequences begin with 0 —

— number of sequences begin with 01:

Initial condition: 4,(1) = 2,4,(2) = 3.

The initial distribution and the transition matrix of the Markov chain that is uniform over the set of
skeleton sequences can be efficiently computed.



Arithmetic Coding

How do we map message m € M to a skeleton sequence efficiently?

compresses a source Markov chain with known distribution to near optimal length.
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Our Final Construction
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Optimality: Capacity Achieving
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Optimality: Second-order Rate

Theorem For any fixed €, BSC'? (p,) with cross-over probability p,.Ve, let R(N, €) denote the largest
possible rate such that C, y r(n,e) has error probability at moste, and let C denote the capacity of
BSC(p,). Then for large N,

(Second-order coding rate) Given a block length N and an € such that0 < € < 1, the largest possible
rate of a code for the BSC (p) with error probability less than or equal to € is

1 1-p log N
C —— 1 —p)log? P 1(1—-€)+——+0(1).
\/N\/p( p) log ” ( ) N (D



Optimality: Moderate Deviations

Theorem Fixany ¥ > 2. LetC be the capacity of the BSC' (p,). For any sequence of real numbers €y
stey— 0as N— oo andeyVN = o as N = oo, consider the sequence of codes {C{),N,R(N)}N such

thatRy = C — ey. LetP, (Cpn r(n)) denote the average error probability ofC, y g(n) over the
BSC’ (p,). Then

lim —— log P (¢ ) !
m -5 108 fe \bLenr(v)) = — _
Vo Ney 2p(1 - p) log?* F

)

(Moderate deviations) For any sequence of real numbersey s.t.ey = 0 as N = o andeyVN = o as
N — oo, for any sequence of codes {C’N,R(N)}N such thatRy = C — ey, we have

o 1 1
lim mfN—Ezlog P, (C’&N,R(N)) = —

Hoven Ve 2p(1 — p) log? 2= F




Optimality: Error Exponent

Theorem For any fixed £ = 2, consider the sequence of codes {C’ {"N'R;}N at the tangent rate R, Thatis, R, = R,(p,) =

1 — h(p,). Then for the BSC/ (p)with p < p,, {C’ {"N'RI’}N at rate R}, the error probability

1
. | p~NEgp(R)
Pe(ef,N,R{,) <0 (\/N) e Py,

(Sphere-packing bound with pre-factor) LetCy r be a sequence of codes for the BSC' (p), each with rate less R, than

the capacity. Let Es,(R) be the slope of Es,(R) atR. Then the error probability P, (Cn g) satisfies

1
P.(C >0 ~N-Esp(R)
«(Cua) <N%(1+Es’p<m)>e

1

VN

Our “pre-factor” is O ( ), while the optimal order of O ( —

N§(1+E§p (R)

)) For the binary erasure channel (BEC), both

with and without feedback, the optimal pre-factor is O (\/iﬁ)



Sphere Packing Bound Below Critical Rate
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Conclusion

* We provide a practical implementation of the rubber coding method of Ahlswede et al. for feedback BSC.

* For the stochastic BSC with feedback, we show that our scheme is nearly optimal in a strong sense for
certain parameters.

* A byproduct of the analysis is a strict enlargement of the rates for which the sphere-packing bound is

known to be achievable with feedback BSC.
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