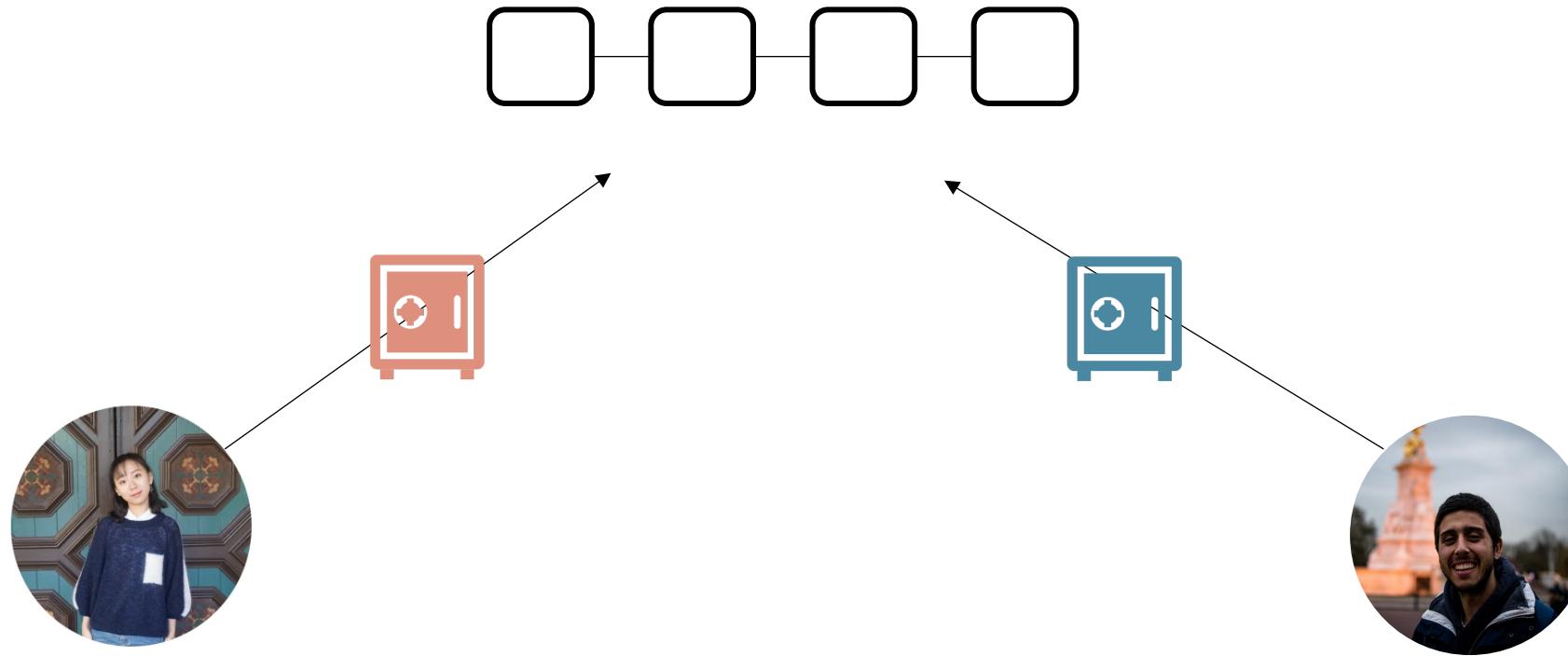

A Complete Characterization of Game-Theoretically Fair, Multi-Party Coin Toss

Gilad Asharov, Elaine Shi, and Ke Wu

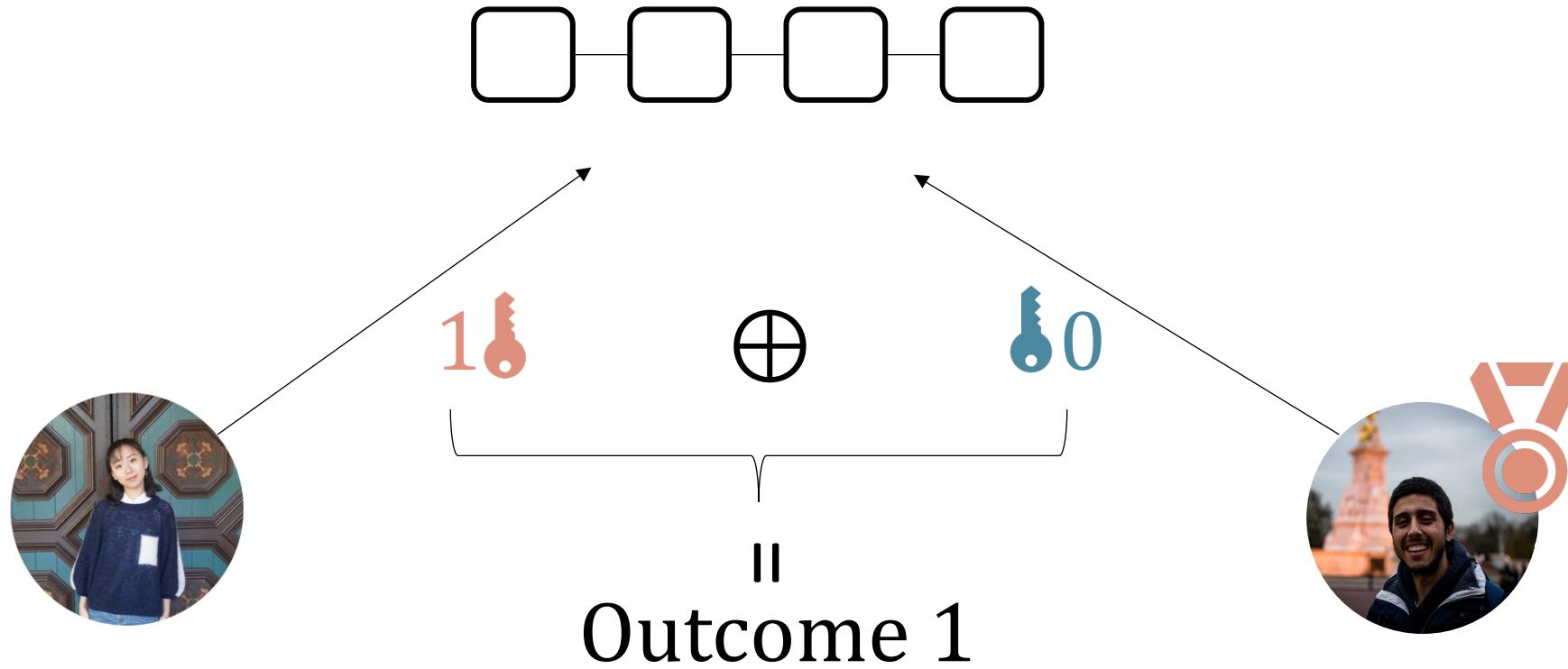
What to eat for crypto seminar?

Sushi!

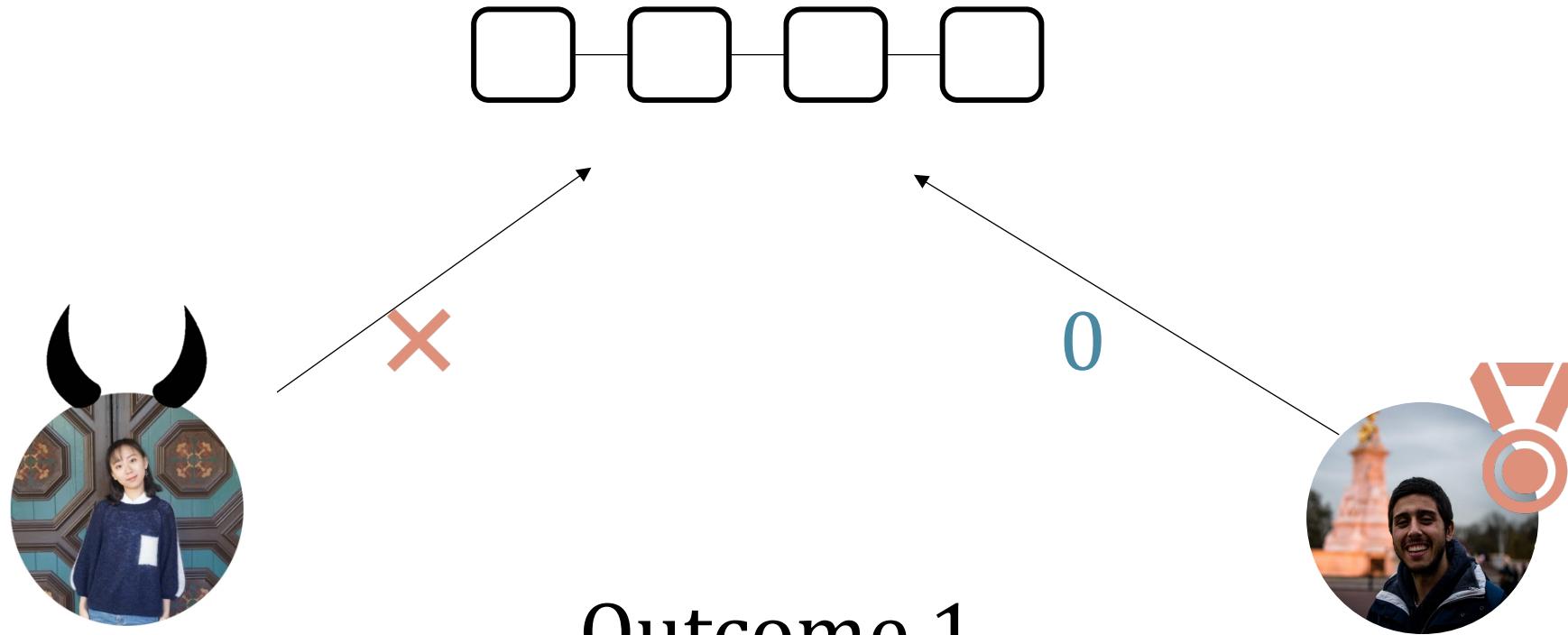
Cake!



[Blum 83]



[Blum 83]



[Blum 83]

Coin toss protocol

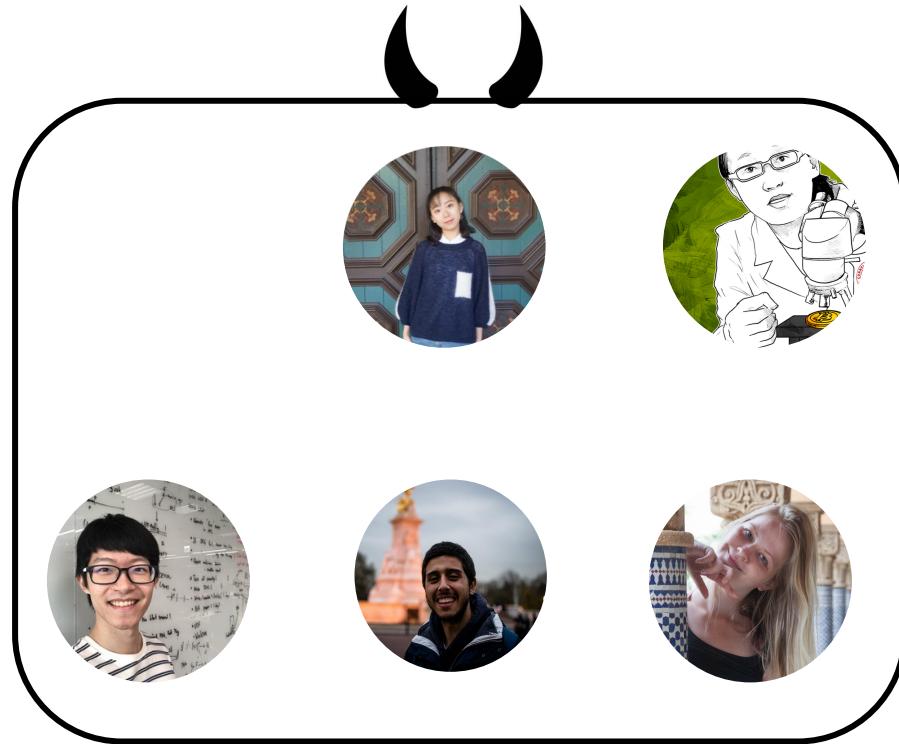
- Correctness: if all honest, output is uniformly random.
- Strong fairness: strategic player cannot bias the output. X

Impossible due to [Cle86]

Coin toss protocol

- Correctness: if all honest, output is uniformly random.
- Game-theoretic fairness: strategic player cannot benefit herself.

? Game-theoretic fair n -party coin toss?



Sushi!

Cake!

Utility = $\begin{cases} 1, & \text{if I like output} \\ 0, & \text{otherwise} \end{cases}$

Multi-party coin toss protocol

- Correctness: if all honest, output is uniformly random.
- Game-theoretic fairness: a coalition cannot increase its expected utility.

Honest protocol is a Nash equilibrium!

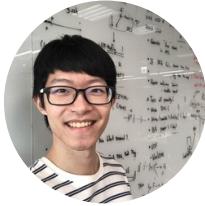
Why we care?

Strong fairness is impossible if half sized coalition.

Want fairness against majority sized coalition.

? Game-theoretic fair n -party coin toss?

Sushi!



Cake!

Impossible against $(n - 1)$ -coalition due to [CGL+18].

Smaller coalition

? Game-theoretic fair n -party coin toss against $< n - 1$?

Yes!

A strawman solution

Sushi!

Cake!

Sushi!

Cake!

No preference

Sushi!

Cake!

Cannot benefit

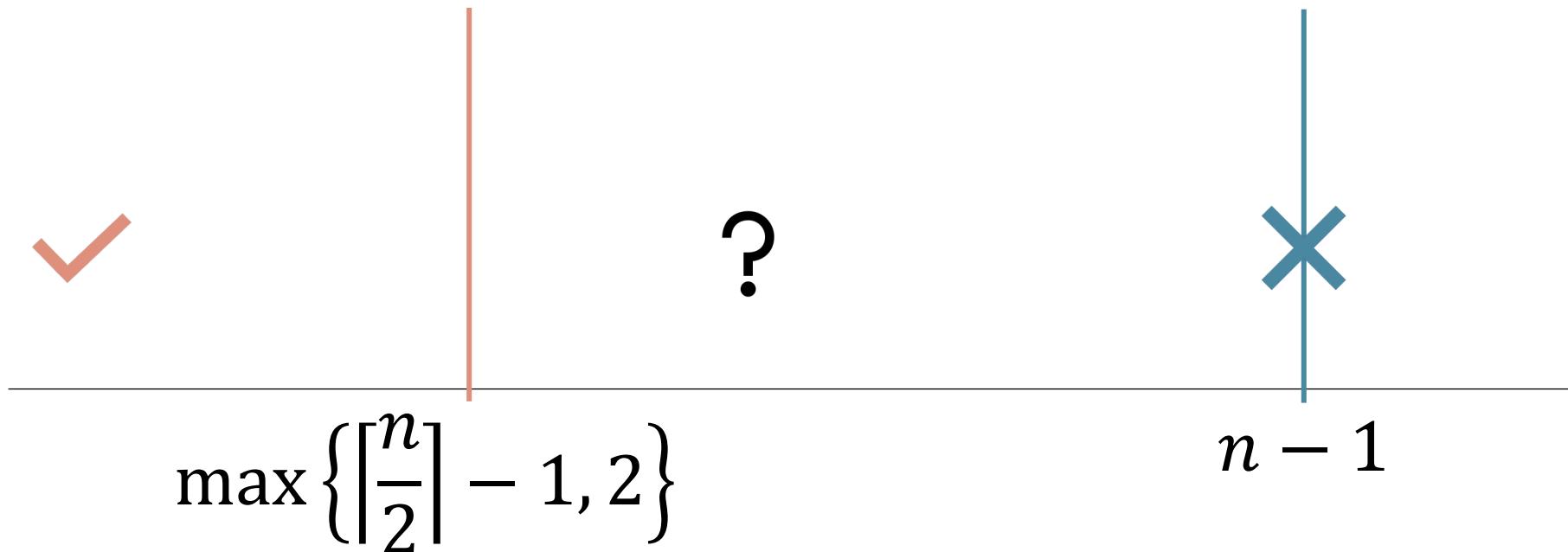
Sushi!

Cake!

Cannot tolerate coalition of size 3

Feasible region?

Under what size of coalition is it possible to achieve game-theoretic fairness?

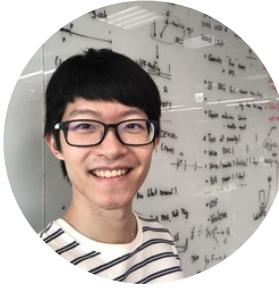


Complete characterization

- A game-theoretic fair coin toss against t -coalition.
- Game-theoretic fairness is impossible against $(t + 1)$ -coalition.

Protocol

Sushi!



Cake!

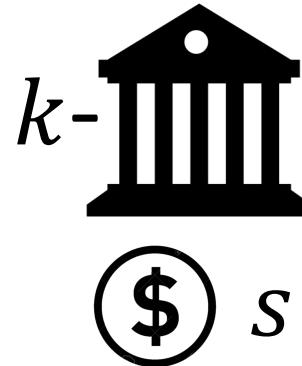
s_0

\oplus

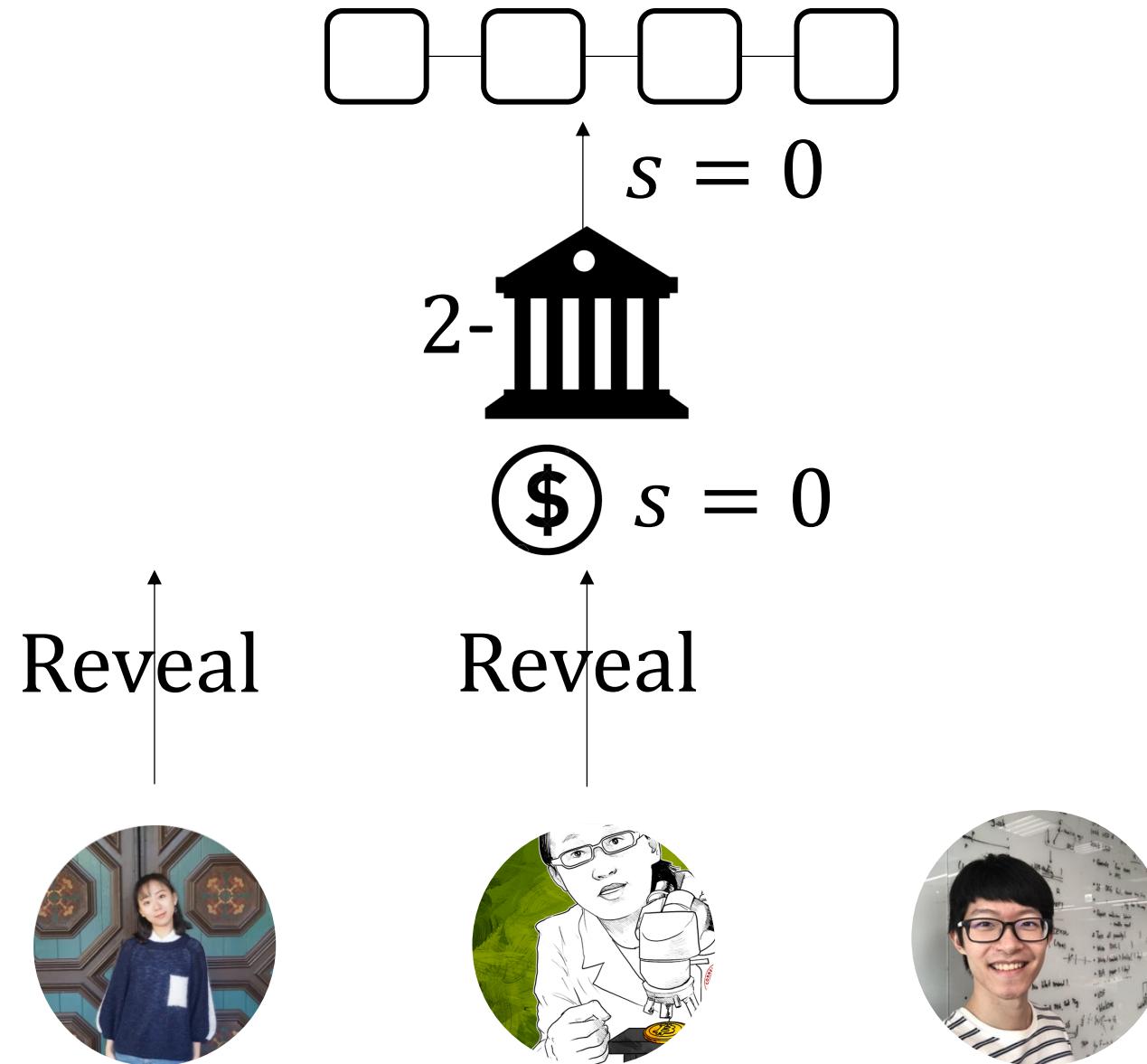
s_1

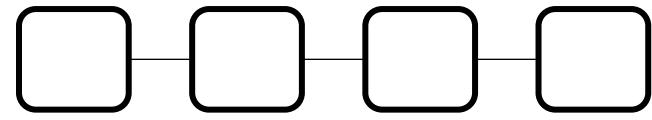
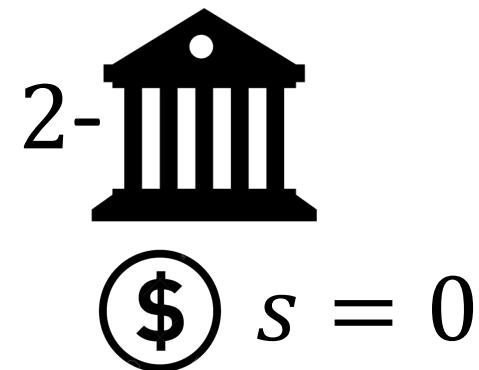
Outcome

Secret sharing trusted authority

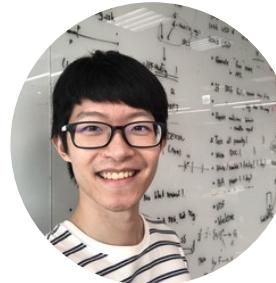


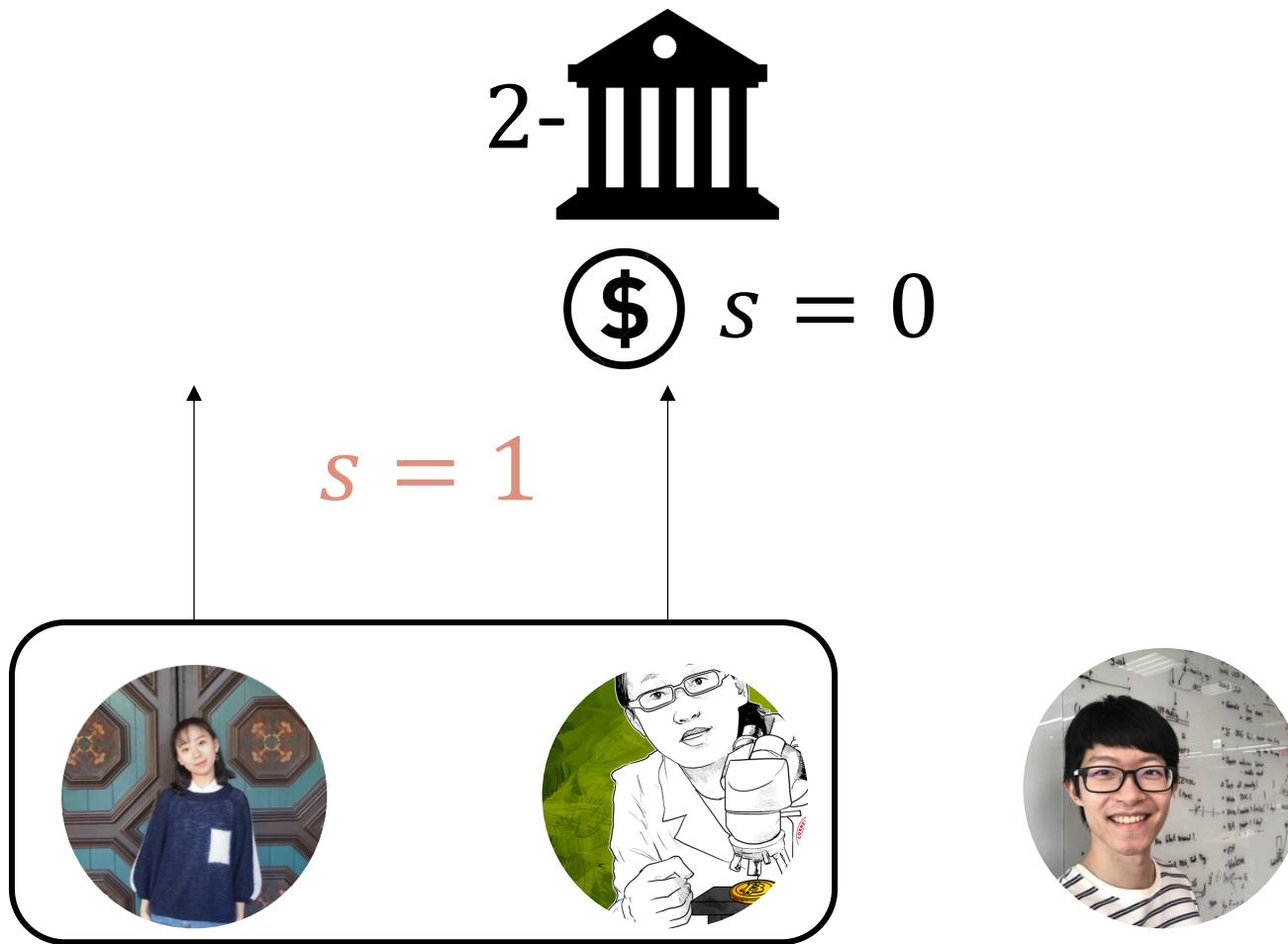
- Only $\geq k$ players can ask to reveal s .
- Any $\geq k$ players can rewrite s ;

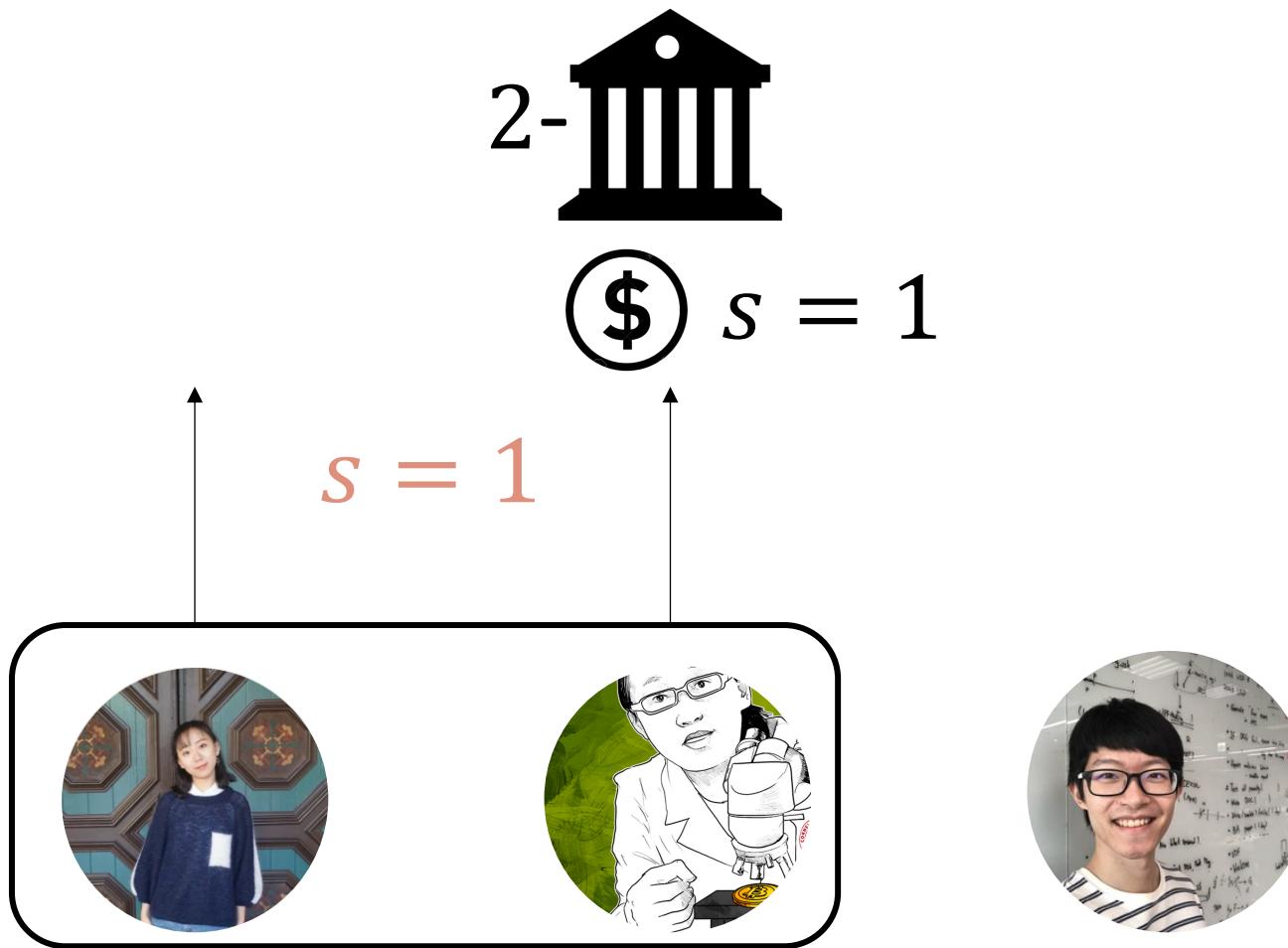




Reveal

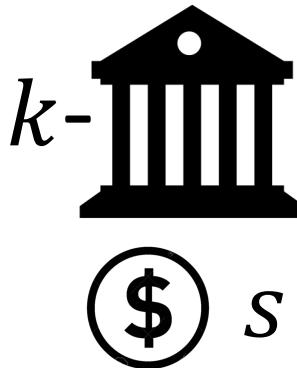






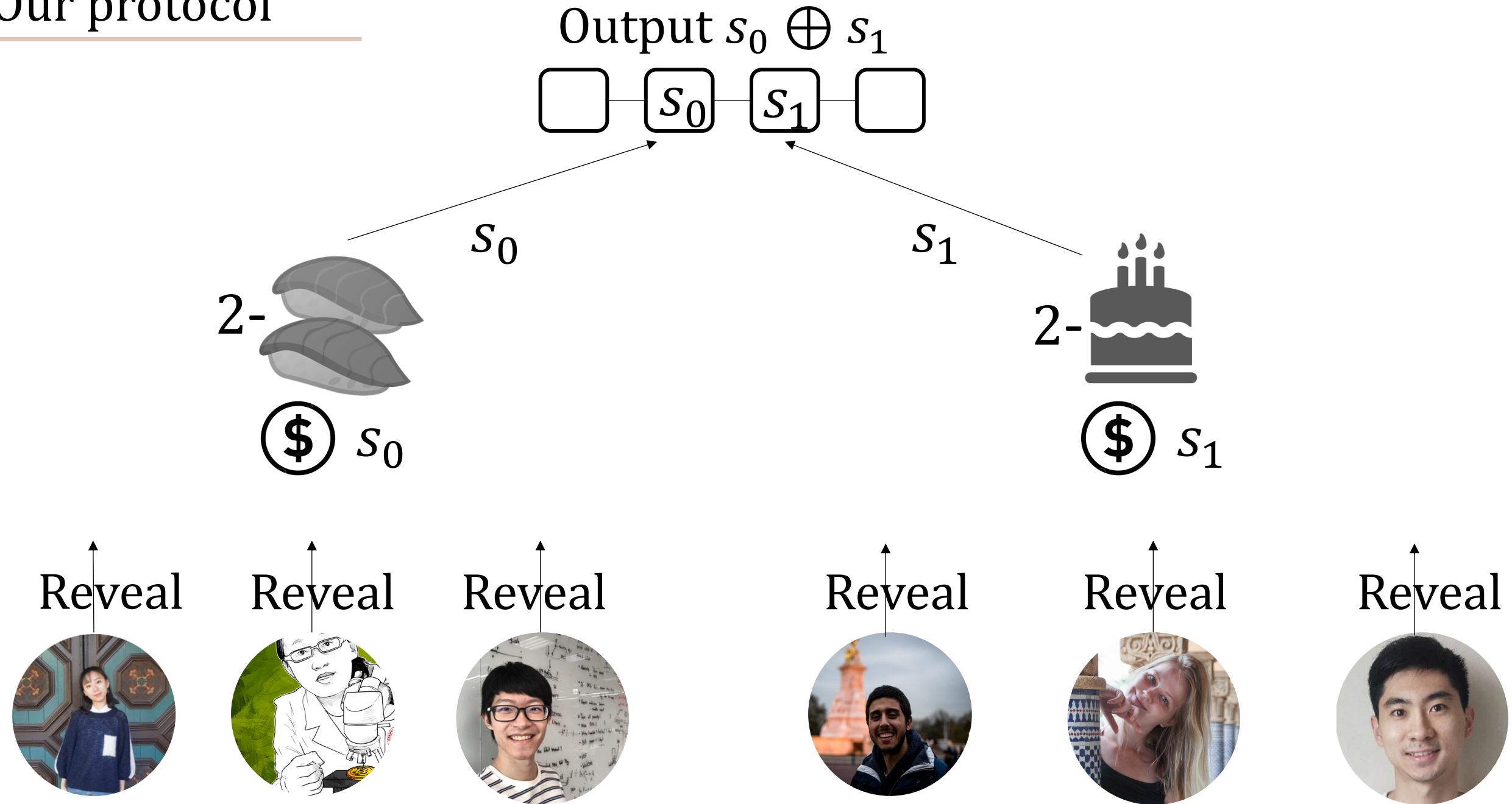
Only rewrite once before any reveal request.

Summary of trusted authority

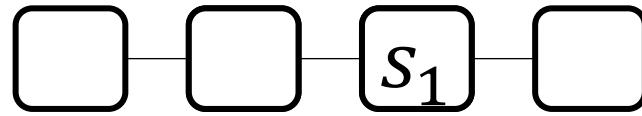
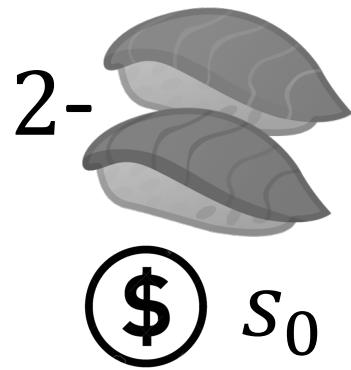
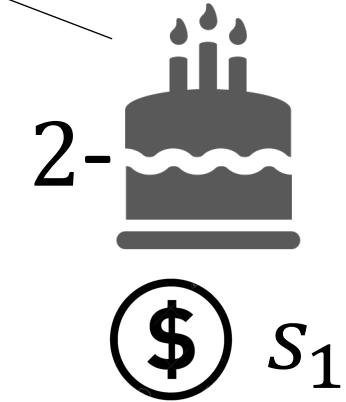


- Only $\geq k$ players can ask to reveal s .
- Any $\geq k$ players can rewrite s before reveal;

Our protocol



Output s_1



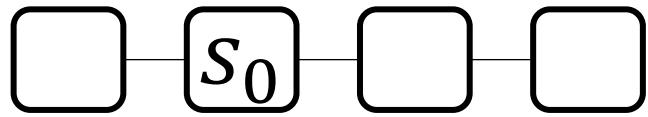
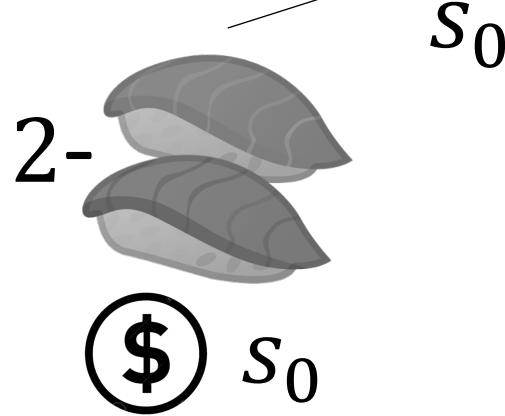
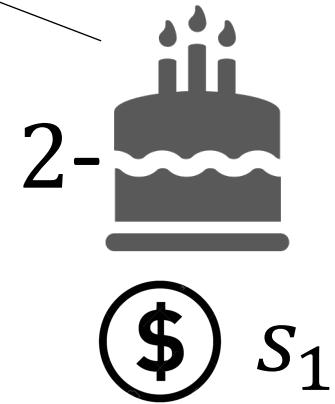
Reveal

Reveal

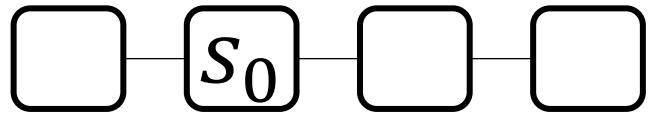
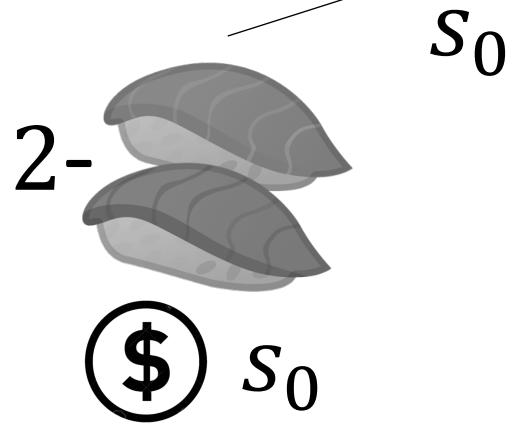
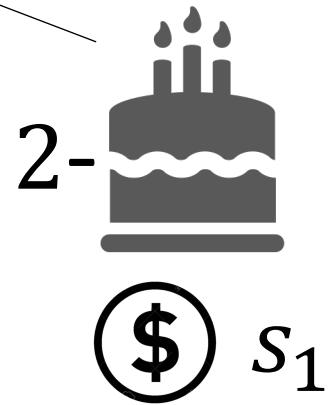
Reveal

Reveal

Output s_0 ?



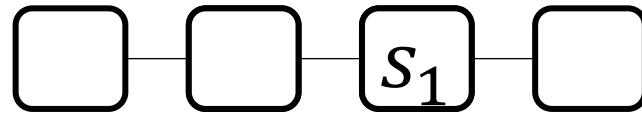
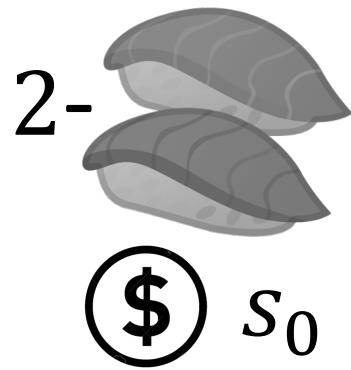
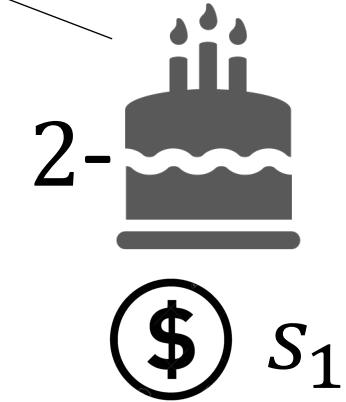
Output 0!



Asymmetric

Why is this protocol asymmetric?

Output s_1



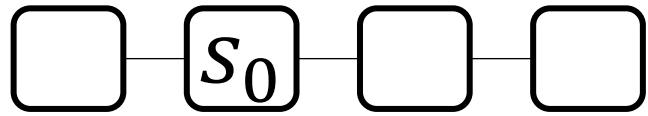
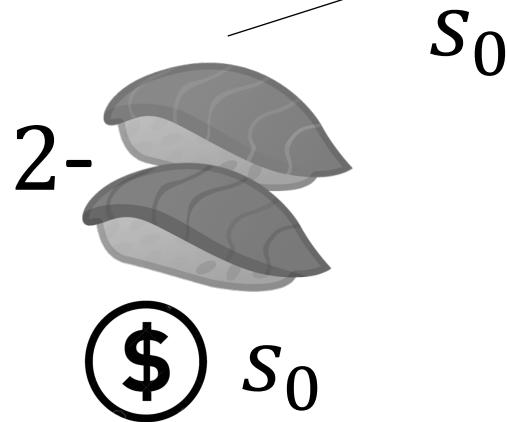
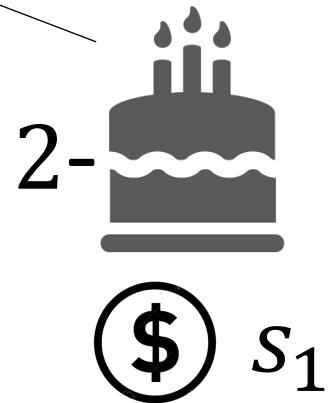
Reveal

Reveal

Reveal

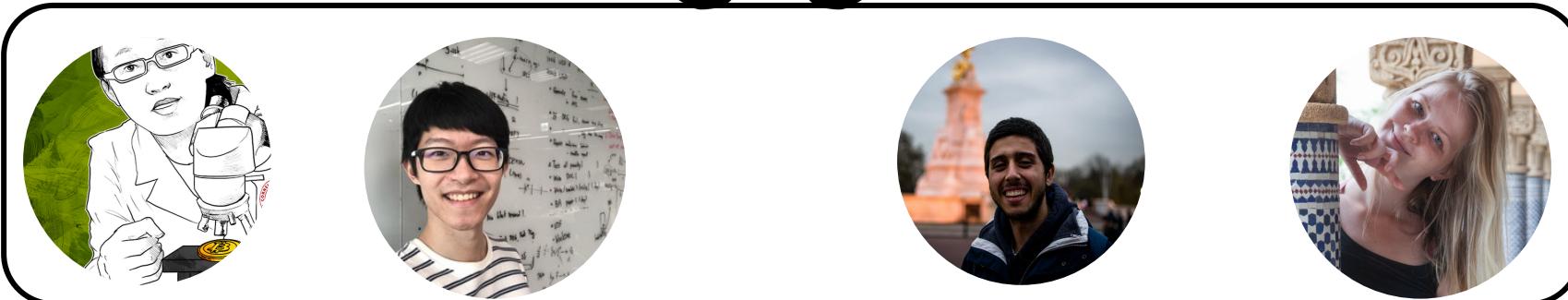
Reveal

Output 0!

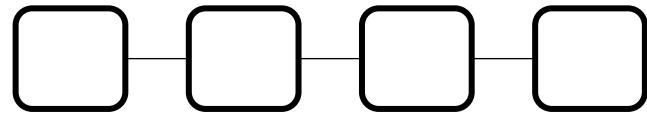


Fairness against coalition of size 4

No preference



Output $s_0 \oplus s_1$

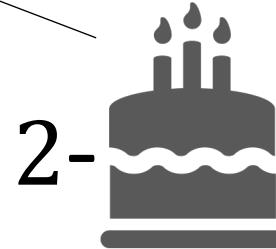


s_0

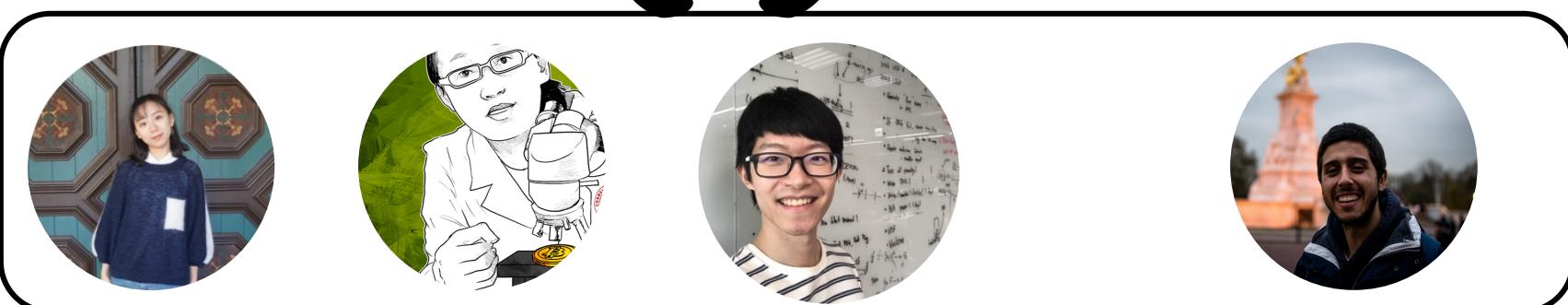


s_0

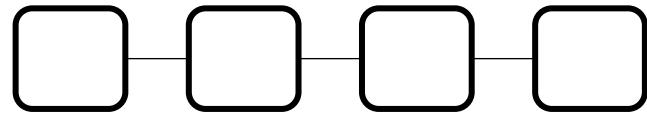
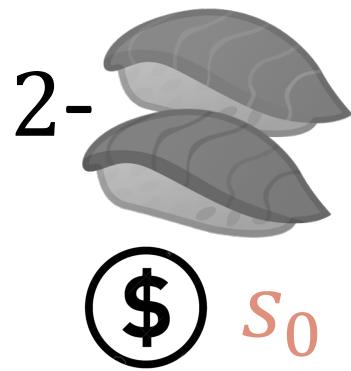
s_1



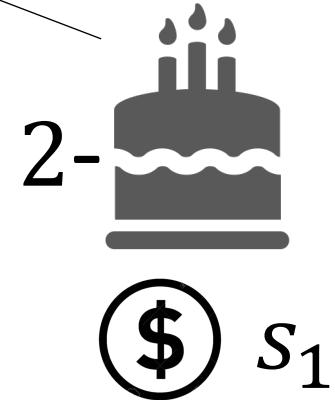
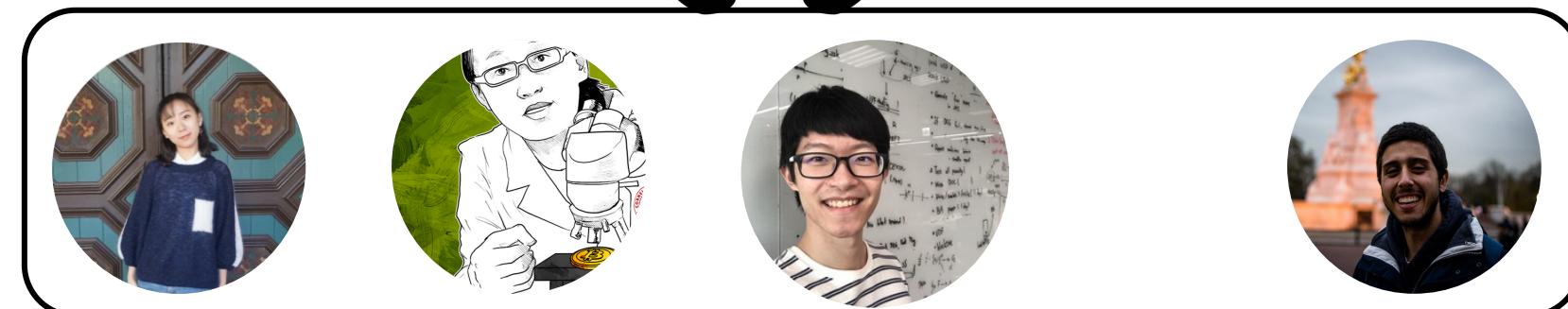
s_1



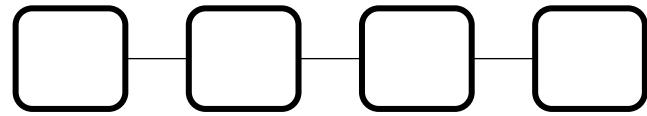
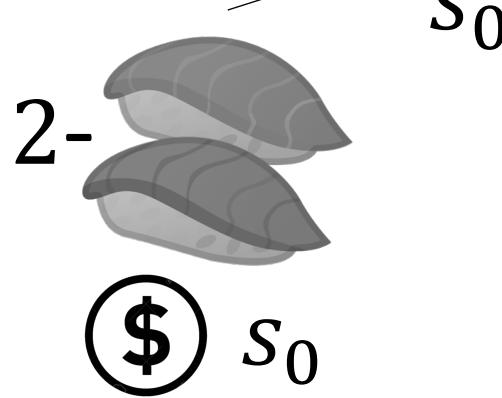
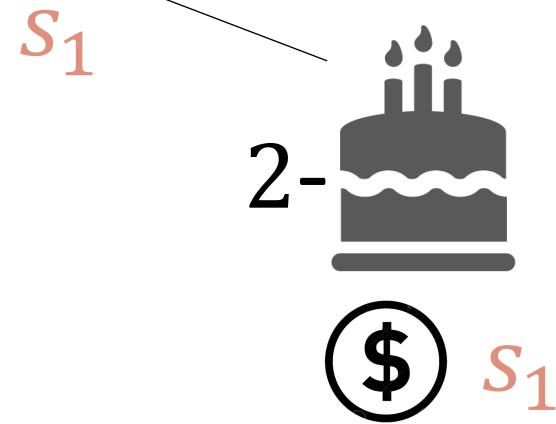
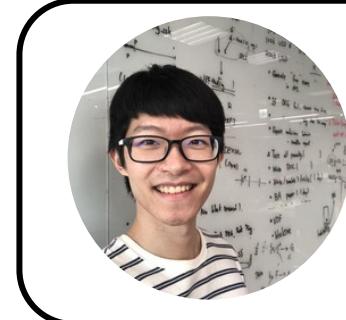
Output s_1



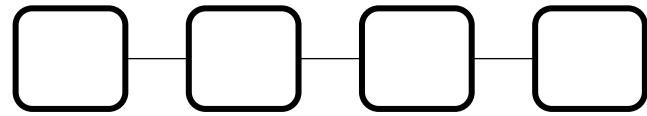
s_1



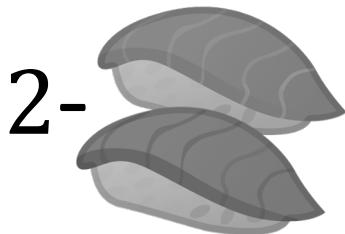
Output $s_0 \oplus s_1$



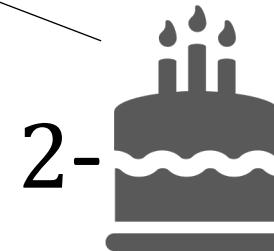
Output 0!



s_0



$\$ \ s_0$

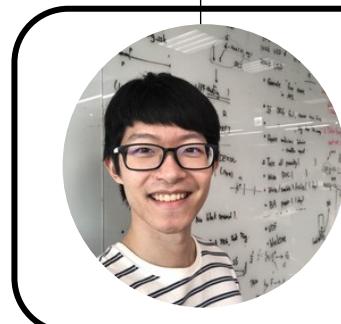


$\$ \ s_1$

Reveal

Reveal

Reveal



Reveal

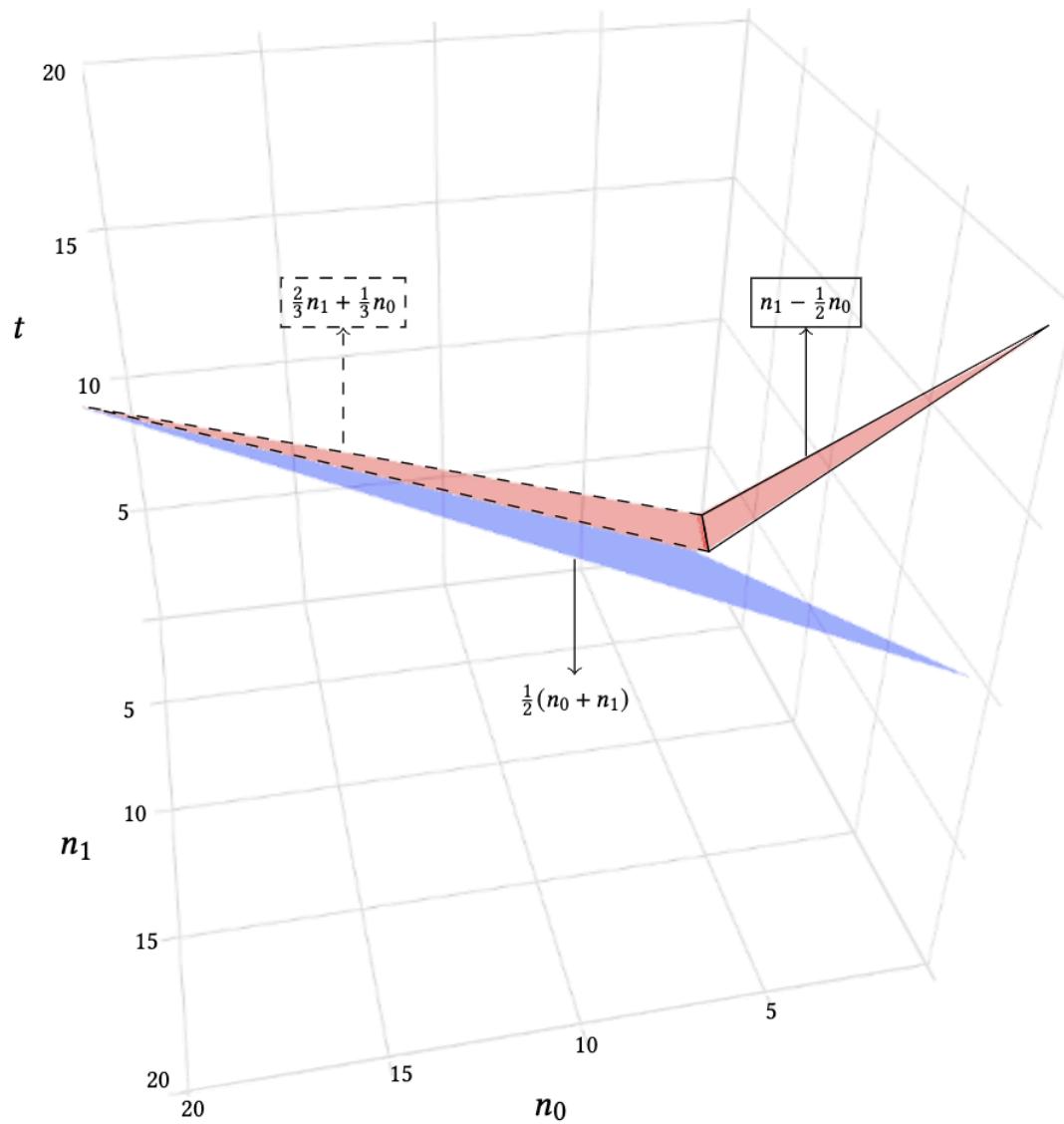
This protocol is game-theoretic fair again coalition of size 4.

Can we generalize?

Achievability	Coalition size t
$if n_1 \geq \frac{5}{2}n_0$	$n_1 - \frac{1}{2}n_0$
$otherwise$	$\frac{2}{3}n_1 + \frac{1}{3}n_0$

Game-theoretic fairness is impossible against $(t + 1)$ -coalition.

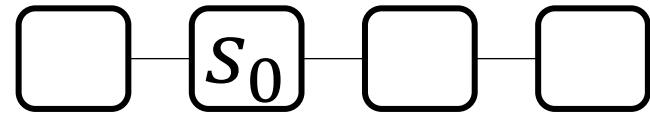
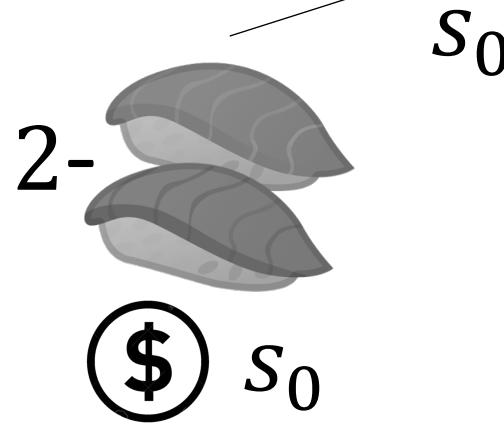
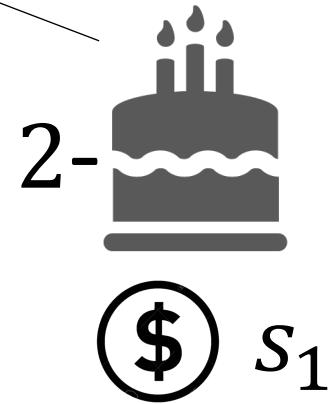
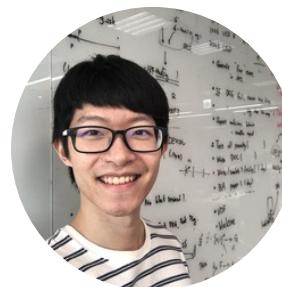
Landscape



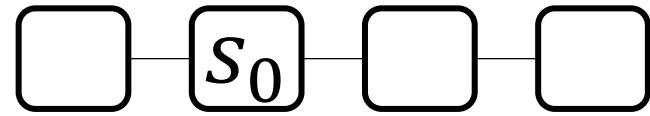
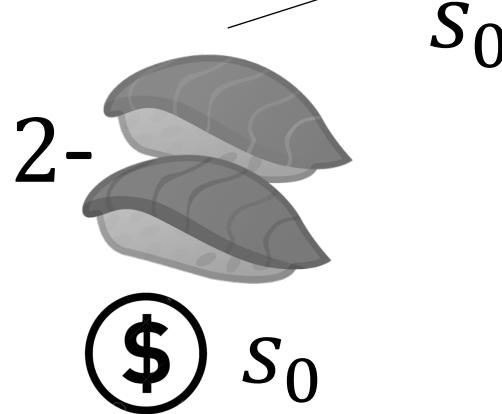
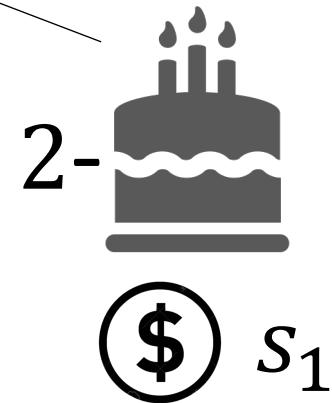
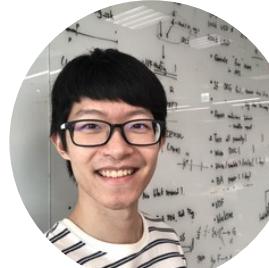
Phase Transition

Achievability	Coalition size t
$if \ n_1 \geq \frac{5}{2}n_0$	$n_1 - \frac{1}{2}n_0$
$otherwise$	$\frac{2}{3}n_1 + \frac{1}{3}n_0$

Output 0!

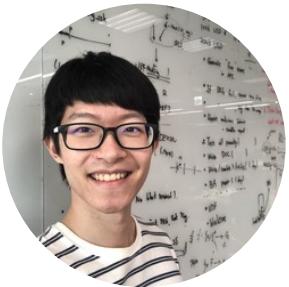


Output 0!

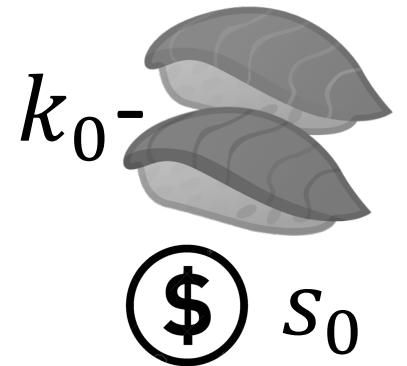
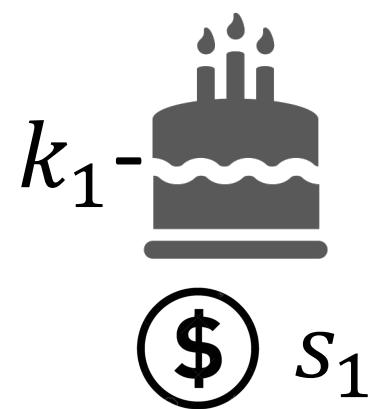


How to choose the threshold in general?

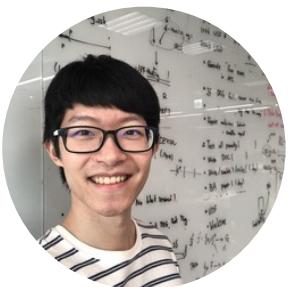
Sushi!



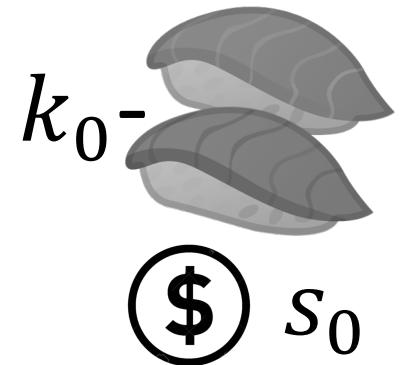
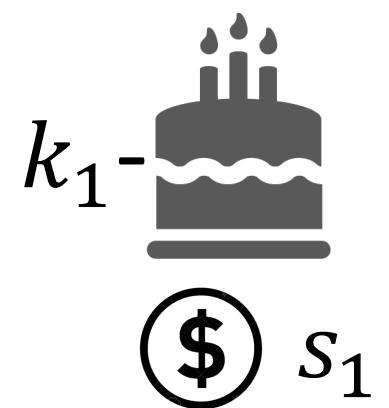
Cake!



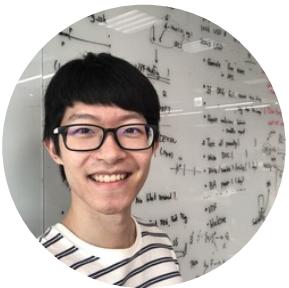
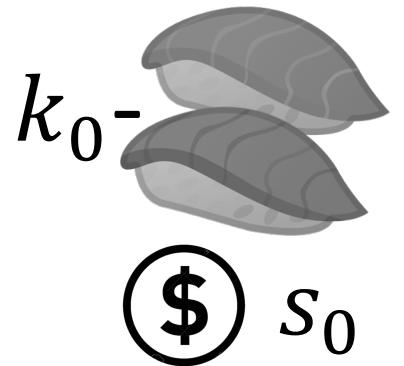
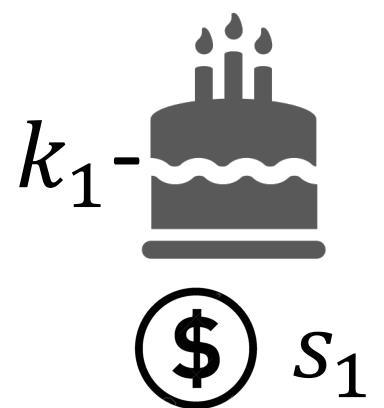
- Condition 1: Coalition cannot control both coins.



$$t \leq k_0 + k_1$$

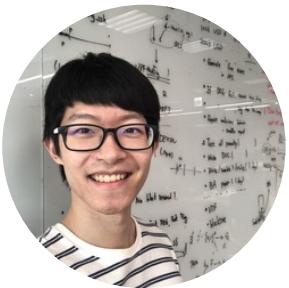
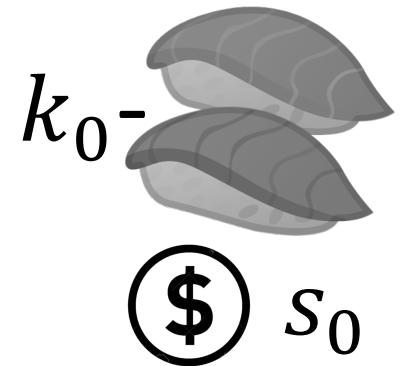
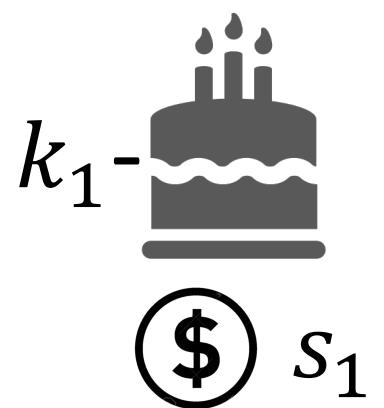


- Condition 2: If control s_1 , cannot fail reconstruction of s_0 .



$$t \leq (n_0 - k_0 + 1) + k_1$$

- Condition 3: If can fail reconstruction of s_1 , must not prefer 0.



If $n_1 - k_1 < n_0, t \leq 2(n_1 - k_1)$

Achievability: optimization

Maximize t

Subject to $t < (k_0 + 1) + (k_1 + 1)$

$t < (n_0 - k_0) + (k_1 + 1)$

If $n_1 - k_1 < n_0, t \leq 2(n_1 - k_1)$

	k_0	k_1	t
$if n_1 \geq \frac{5}{2}n_0$	$\frac{1}{2}n_0$	$n_1 - n_0$	$n_1 - \frac{1}{2}n_0$
$otherwise$	$\frac{1}{2}n_0$	$\frac{2}{3}n_1 - \frac{1}{6}n_0$	$\frac{2}{3}n_1 + \frac{1}{3}n_0$

Three conditions imply fairness

- Condition 1: Coalition cannot control both coins.
- Condition 2: If control s_1 , cannot fail reconstruction of s_0 .
- Condition 3: If can fail reconstruction of s_1 , must not prefer 0.

Conclusion

1. We can construct game-theoretic fair coin toss against coalition of size

$$t = \begin{cases} n_1 - \left\lfloor \frac{1}{2} n_0 \right\rfloor, & \text{if } n_1 \geq \frac{5}{2} n_0, \\ \left\lceil \frac{1}{2} n_0 \right\rceil + \left\lfloor \frac{2}{3} n_1 - \frac{1}{6} n_0 \right\rfloor, & \text{otherwise.} \end{cases}$$

2. There is no game-theoretic fair coin toss against $(t + 1)$ -sized coalition.

More result

1. Complete characterization of another fairness notion: no coalition can harm honest individual.
2. Complete characterization under other utility.

References

- [Cle 86] Richard Cleve. *Limits on the security of coin flips when half the processors are faulty*. In STOC, 1986.
- [Blu83] Manuel Blum. *Coin flipping by telephone*. In CRYPTO, 1981.
- [CGL+18] Kai-Min Chung, Yue Guo, Wei-Kai Lin, Rafael Pass, and Elaine Shi. *Game theoretic notions of fairness in multi-party coin toss*. In TCC, 2018.