
Beyond	Single-Deletion	Correcting	Codes:

Substitutions	and	Transpositions

Ryan	Gabrys, Venkatesan	Guruswami, João	Ribeiro, Ke Wu



Three types of common errors

Substitution

Deletion(insertion)

Transposition



A G C G C T

A G C G T T

Substitution



Deletion(insertion)
A G C G C T

A G C G T



Transposition

A G C G C T

A G C C G T



How about the interplay?

Deletion SubstitutionTransposition

one del and one sub
one del or one sub

One del or one transposition



Our Results

Alphabet Error type Redundancy

q One del or one sub (edit error) log 𝑛 + 𝑂!(log log 𝑛)

2 One del or one adjacent trans log 𝑛 + 𝑂(log log 𝑛)

1 One del AND one sub 4log 𝑛 + 𝑂 log log 𝑛
List of size 2



Our Results

Alphabet Error type Redundancy

q One del or one sub (edit error) log 𝑛 + 𝑂!(log log 𝑛)



VT sketch: binary

VT sketch: ternary
Why it fails

Weighted VT sketch



VT sketch: binary

Weighted VT sketch

VT sketch: ternary
Why it fails



Correcting one edit error: binary

[Lev 65, VT65]

𝑥 = 0 0 1 0 1If substitution: 𝑓 𝑥 = 8

𝑓 𝑥 =T
"#$

%

𝑖 ⋅ 𝑥"VT sketch:



𝑦 = 0 0 1 1 1

𝑓 𝑥 = 8

𝑓 𝑦 = 12

𝑓 𝑦 − 𝑓 𝑥 =T
$

%

𝑖 ⋅ 𝑦" − 𝑥" = 𝑒 𝑦" − 𝑥" = 4

𝑓 𝑥 =T
"#$

%

𝑖 ⋅ 𝑥"VT sketch:

Position of substitution



𝑦 = 0 0 1 1 1

𝑓 𝑥 =T
"#$

%

𝑖 ⋅ 𝑥"

𝑓 𝑥 = 8

𝑓 𝑦 = 12

𝑥 = 0 0 1 0 1

VT sketch:



Correcting one edit error: deletion

𝑦 = 0 0 0 1

𝑓 𝑥 = 8

𝑓 𝑦 = 4

𝑓 𝑥 − 𝑓 𝑦 = T
&

%'$

𝑦" + 𝑑𝑥& = 4

𝑓 𝑥 =T
"#$

%

𝑖 ⋅ 𝑥"VT sketch:



𝑦 = ? 0 0 0 1

𝑓 𝑥 = 8

𝑓 𝑦 = 4

𝑓 𝑥 − 𝑓 𝑦 = T
&

%'$

𝑦" + 𝑑𝑥& = 4

𝑓 𝑥 =T
"#$

%

𝑖 ⋅ 𝑥"VT sketch:



𝑦 = 0 0 0 ? 1

𝑓 𝑥 = 8

𝑓 𝑦 = 4

𝑓 𝑥 − 𝑓 𝑦 = T
&

%'$

𝑦" + 𝑑𝑥& = 4

𝑓 𝑥 =T
"#$

%

𝑖 ⋅ 𝑥"VT sketch:

𝑥 = 0 0 1 0 1



VT sketch

𝑓 𝑥 =T
"#$

%

𝑖 ⋅ 𝑥"VT sketch:

log 𝑛 + 2 bits!



VT sketch: binary

Weighted VT sketch

VT sketch: ternary
Why it fails



VT code for ternary?

𝑓 𝑥 =T
"#$

%

𝑖 ⋅ 𝑥"

𝑥 = 0 2 1 0 1 2 𝑓 𝑥 = 24



VT code for ternary: substitution

𝑓 𝑥 =T
"#$

%

𝑖 ⋅ 𝑥"

𝑓 𝑥 = 24

𝑓 𝑦 − 𝑓 𝑥 = 𝑒 𝑦" − 𝑥" = 2

𝑦 = 0 1 1 0 1 2 𝑓 𝑦 = 22



𝑓 𝑥 =T
"#$

%

𝑖 ⋅ 𝑥"

𝑓 𝑥 = 24𝑥 = 2 1 1 0 1 2 𝑥 = 0 2 1 0 1 2

𝑓 𝑦 − 𝑓 𝑥 = 𝑒 𝑦" − 𝑥" = 2

#0 = 2
#1 = 2
#2 = 2

𝑦 = 0 1 1 0 1 2 𝑓 𝑦 = 22



𝑓 𝑥 =T
"#$

%

𝑖 ⋅ 𝑥"

𝑓 𝑥 = 24𝑥 = 0 2 1 0 1 2

𝑦 = 0 1 1 0 1 2 𝑓 𝑦 = 22



VT code for ternary: deletion of 0

𝑓 𝑥 =T
"#$

%

𝑖 ⋅ 𝑥"

𝑓 𝑥 = 24

𝑦 = 0 2 1 1 2 𝑓 𝑦 = 21

𝑓 𝑥 − 𝑓 𝑦 = T
&

%'$

𝑦" = 3



𝑓 𝑥 =T
"#$

%

𝑖 ⋅ 𝑥"

𝑓 𝑥 = 24

𝑦 = 0 2 1 ? 1 2 𝑓 𝑦 = 21

𝑓 𝑥 − 𝑓 𝑦 = T
&

%'$

𝑦" = 3

𝑥 = 0 2 1 0 1 2

Position of deletion



VT code for ternary: deletion of 1

𝑓 𝑥 =T
"#$

%

𝑖 ⋅ 𝑥"

𝑓 𝑥 = 24

𝑦 = 0 2 0 1 2 𝑓 𝑦 = 18

𝑓 𝑥 − 𝑓 𝑦 = T
&

%'$

𝑦" + 𝑑 = 6



𝑓 𝑥 =T
"#$

%

𝑖 ⋅ 𝑥"

𝑓 𝑥 = 24𝑥 = 1 0 2 0 1 2 𝑥 = 0 2 1 0 1 2

𝑦 = 0 2 0 1 2 𝑓 𝑦 = 18

𝑓 𝑥 − 𝑓 𝑦 = T
&

%'$

𝑦" + 𝑑 = 6



T
&

%'$

𝑦" + 𝑑

𝑥 = 1 0 2 0 1 2 𝑥 = 0 2 1 0 1 2

T
&

%'$

𝑦" + 𝑑



T
&

%'$

𝑦" + 𝑑

𝑥 = 1 0 2 0 1 2 𝑥 = 0 2 1 0 1 2

T
&

%'$

𝑦" + 𝑑

Fails when there is a chunk with an	average 1



VT sketch: binary

Weighted VT sketch

VT sketch: ternary
Why it fails



Bias the weight!

𝑓 𝑥 =T
"#$

%

𝑖 ⋅ 𝑥" 𝑓 𝑥 =T
"#$

%

𝑖 ⋅ 𝑤(𝑥")

𝑤 0 = 0
𝑤 1 = 1
𝑤 2 = 2 log 𝑛



𝑓 𝑥 =T
"#$

%

𝑖 ⋅ 𝑤(𝑥")

𝑤 0 = 0
𝑤 1 = 1
𝑤 2 = 2 log 𝑛

𝑥 = 1 0 2 …

𝑥 = 0 2 1…

𝑓 𝑥 = 1 + 6 log 𝑛

𝑓 𝑥 = 4 log 𝑛 + 3



As long as the chunk of avg 1 has length < 2 log 𝑛

Run of 0 after deleting all 2’s < log 𝑛

𝑥 = 1 0 2 0 2 0 2 0 2 0 2 2…
< 2 log 𝑛

𝑥 = 1 0 2 0 2 0 2 0 2 0 2 2…

Runlength replacement [SWGY17]

< log 𝑛



𝑥

Weighted VT: encoding

Regular 𝑥′

Weighted VT of 𝑥′

log 𝑛 + log log 𝑛 redundancy!



More in paper

1. Extends to general 𝑞

2. Binary code correcting one del and one sub

3. Binary code correcting one del and one adjacent trans


